

 Navigation

 	
 index

 	tacc_stats latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a ./index.rst or ./README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	tacc_stats latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/file.png

_static/ajax-loader.gif

_static/plus.png

README.html

 Navigation

 		
 index

 		tacc_stats latest documentation »

tacc_stats Documentation {#mainpage}

Authors

R. Todd Evans (mailto:rtevans@tacc.utexas.edu)
Bill Barth (mailto:bbarth@tacc.utexas.edu)

Description

The tacc_stats package provides the tools to monitor resource usage of HPC systems at multiple levels of resolution.

The package is organized into four heirarchical modules. The core of the package is the monitor module. This module collects data from the compute nodes. It produces raw text files that may then be processed by the pickler module.
The pickler module processes the raw node-level text files into a single binary Python pickle file for each job. The pickle files may then be tested and plotted by the analysis module. Finally, the site module ingests data from the pickle files and analysis module’s tests into a database that may be queried using a web interface. Additional details for each module follow:

		monitor is an automatic node-level system monitor that collects resource usage data from hardware performance counters and the /proc filesystem. It can be set up to operate in two different modes. The first mode is driven by cron and relies on copies over the shared file-system to aggregate data. The second mode operates as a daemon and is controlled by the /etc/init.d/taccstats script. Both versions require a signal inidicating the start and end of each job. This is accomplished at TACC using the prolog and epilog scripts that are run by the job scheduler at the start and end of each job.

		pickler is a Python module that processes the node-level data into job-level pickled Python dictionaries. It attempts to clean the data by handling counter overflow and standarding units of measurement. It also translates chip event codes (in hex) to human readable event names.

		analysis is a Python module that performs tests, computes metrics, and generates plots on jobs or groups of jobs.

		site is a Python module built on Django that builds a database and
website that allows exploration and visualization of data at the job, user, project, application, and/or system level.
It interfaces with a Postgres Database and optionally an XALT Database (https://github.com/Fahey-McLay). Tests are automatically applied daily to all jobs. These tests attempt to identify jobs that were distressed or performing in a sub-optimal manner. Plots are also generated on the fly to represent data at several levels.

Code Access

To get access to the tacc_stats source code clone this repository:

git clone https://github.com/TACC/tacc_stats

Building tacc_stats

monitor module

These commands quickly build and install the TACC Stats package into your
‘~/.local/’ directory. You should customize the tacc_stats/setup.cfg file
for your site specific paths and devices. The modality of TACC Stats is
chosen under the OPTIONS section of the setup.cfg file. There are
currently three modes available:

		RabbitMQ sends data off node to central location at collection time (RMQ = True) & TACC Stats is run as a linux-style init.d daemon service (MODE = DAEMON).

		RabbitMQ sends data off node to central location at collection time (RMQ = True) & TACC Stats is run as a cron job (MODE = CRON).

		Data is stored on local node and archived daily via rsync to central location (RMQ = FALSE) & TACC Stats is run as a cron job (MODE = CRON).

To install TACC Stats on the machine where data will be analyzed do the following:

 $ git clone https://github.com/TACC/tacc_stats
 $ pip install --user -e tacc_stats/

Scripts and executables will be installed in
‘~/.local/bin’ and Python modules in ‘~/.local/lib’. In order for RMQ mode to recieve data the rabbitmq-server must
be started and the amqp_listend executable started. amqp_listend -s SERVERNAME -a ARCHIVEDIR will start a daemon that consumes tacc_stats data from the server running RabbitMQ SERVERNAME and outputs the data as textfiles to the ARCHIVEDIR.

To install TACC Stats on the compute nodes the recommended approach is to generate an rpm:

 $ git clone https://github.com/TACC/tacc_stats
 $ cd tacc_stats
 $ python setup.py bdist_rpm

This will generate an rpm in the newly created dist/ directory.
To configure the build for a particular site, create a new file in the cfg/ directory similar to the other $system.cfg files already in there, with paths configured for your system’s setup. Place the name of that file in the top-level directory file setup.cfg on the SITE_CFG line. Paths must be set and Types of devices to collect will be labeled True to activate or False to deactivate. The chip device collectors will test whether it monitor is running on the correct architecture for the given collector. This allows multiple chip architectures to be collected using the same build.
Note hsw, snb, wtm, nhm, amd are for Haswell, Sandybridge/Ivy Bridge, Westmere, Nehalem, and AMD architectures.
The corresponding hyper-threaded versions will be suffixed with a _ht if available.

This will generate an rpm that will install the executable tacc_stats_monitord in the directory specified by the exe_path field in setup.cfg. When compiled in
cron mode without RabbitMQ the installation of the rpm will setup a cron task that rsyncs data daily to the tacc_stats_home directory. When compiled in RabbitMQ mode the rpm will setup a cron task that sends data to the SERVER specified in setup.cfg. When compiled in RabbitMQ and DAEMON mode the installation will install the service taccstats which can
be run as a linux-style /etc/init.d service. The installation is also compatible with systemd type operating systems.

Detailed Install

		Introduction
The build system uses Python’s distutils module. The C extensions
and Python modules for a particular site are configured using the setup.cfg.Thus the configure file setup.cfg should be customized for your site before installation.
The installation will place a number of scripts into the Python bin
directory and the modules in the Python lib directory.

		Configure
All configuration is specified in the setup.cfg file.

The meaning of every field in the [OPTIONS] section are as follows:

`RMQ` True/False Whether to use RabbitMQ messaging for sending data or rely on rsync

`MODE` DAEMON/CRON Whether to build `monitord` as a cron launched application or daemon service

`SERVER` The server which accepts data from all nodes

`FREQUENCY` The frequency at which samples are taken in DAEMON mode

The meaning of every field in the [PATH] section is specified here:

`exe_path` Location to install `monitord` and `amqp_listend`

`stats_dir` The directory that `monitor` writes to

`stats_lock` The file that `monitor` uses to lock during counter reads

`jobid_file` The file that contains the Job ID of the currently monitored job

`tacc_stats_home` The directory in which `archive` (all node-based data) will be contained

`acct_path` The accounting file generated by the job scheduler

`host_list_dir` The directory than contains each job's host list

`batch_system` SLURM or SGE are currently supported

`host_name_ext` The extension of the hostnames, e.g. stampede.tacc.utexas.edu

`pickles_dir` The directory the pickles files will be stored to and read from.

`lariat_path` The directory the lariat data (if any) is read from.

The `[TYPES]` section lists the devices that are currently readable.
They are set to True or False depending on whether they are on the
system. If the computing platform is missing any `TYPES` that are left as True that type
will automatically be skipped during the monitoring.

		Build
There are currently three approaches to building and installing the package.

		pip,easy_install, or python setup.py install: install all perform the same build and
install steps. The package entire is installed using this approach.

		python setup.py bdist_rpm: this builds an rpm in the tacc_stats/dist
directory. The rpm will install the entire package and place a setuid’d root
version of monitor called tacc_stats in /opt/tacc_stats. It will also modify
crontab to run tacc_stats every 10 minutes (configurable) and run archive.sh
every night at a random time between 2am and 4am. archive.sh copies the data
in stats_dir to tacc_stats_home. It is used at TACC to move data from local
storage on the compute nodes to a central filesystem location.

		python setup.py bdist_rpm: this builds an rpm in the tacc_stats/dist
directory. The rpm will install only the monitor package and place a setuid’d root
version of monitor called tacc_stats_monitord in /opt/tacc_stats. It will also modify
crontab to run tacc_stats every 10 minutes (configurable) and run archive.sh
every night at a random time between 2am and 5am. This is the preferred method
for installations to the compute nodes. In the DAEMON mode tacc_stats will be installed
as the /etc/init.d service taccstats.

The first two installation methods are most suited to analysis nodes. They are
reasonable heavyweight and require several Python packages. The third approach is
extremely light-weight and requires only a Python installation. Both rpm based
methods set tacc_stats and archive.sh running automatically.

Running

Installation method 3 should be used to setup monitoring of compute nodes. In order for
tacc_stats to correcly label records with JOBIDs it is required that
the job scheduler prolog and epilog contain the lines
in CRON mode

echo $JOBID > jobid_filetacc_stats begin $JOBID

and

tacc_stats end $JOBID
echo 0 > jobid_file

or in DAEMON mode

service taccstats begin $JOBID
and
service taccstats end $JOBID

respectively. To perform the pickling of this data it is also necessary to
generate an accounting file that contains at least the JOBID and time range
that the job ran. The pickling will currently work without modification on
SGE job schedulers. It will also work on any accounting file with the format

$JOBID : UID : Project ID : Junk : Start time : End time : Time place in queue : SLURM partition : Junk : Job name : Job completion status : Nodes : Cores

for each record using the SLURM interface. In addition to the accounting file,
a directory of host-file logs (hosts belonging to a particular job) must be
generated. The accounting file and host-file logs are used to map JOBID’s to
time and node ranges so that the job-level data can be extracted from the
raw data efficiently.

As mentioned above the monitor module produces a light-weight C
code called monitor which is setuid’d to /opt/tacc_stats/tacc_stats_monitord. It is called at the beginning of every job to configure Performance Monitoring Counter registers
for specific events. As the job is running tacc_stats_monitord is called at regular intervals (the default is 10 mn) to collect the counter registers values at regular time
intervals. This counter data is stored in “raw stats” files. These
stats files are node-level data labeled by JOBID and may or may not be
locally stored, but must be visible to the node as a mount.

Running tacc_stats

tacc_stats can be run manually in CRON mode by:

$ tacc_stats begin jobid
$ tacc_stats collect

However, it is typically invoked by setting up cron scripts and prolog/epilog files as
described in the example below, which corresponds to its usage on Stampede.

Example

		Invocation:
		CRON
tacc_stats_monitord runs every 10-minutes (through
cron), and at the beginning and end of every job (through SLURM
prolog/epilog). In addition, tacc_stats may be directly invoked by
the user (or application) although we have not advertised this.

		DAEMON
tacc_stats_monitord runs every 10-minutes, or the frequency in seconds specified in setup.cfg under the FREQUENCY field (as a DAEMON), and at the beginning and end of every job (through SLURM
prolog/epilog).

		Data Handling:
On each invocation, tacc_stats_monitord collects and records system statistics
to a structured text file on ram backed storage local to the node or else sends the
data to a central server location where it is immediately written to textfiles by
the amqp_listend daemon.
Stats files are typically rotated at every night.In CRON mode
A stats file created at epoch time EPOCH, on
node HOSTNAME, will be stored locally as /var/log/tacc_stats/EPOCH,
and archived at
/scratch/projects/tacc_stats/archive/HOSTNAME/EPOCH.gz.
In DAEMON mode the data will be immediately sent to a server and
available for analysis.

\warning Do not expect all stats files to be created at midnight
exactly, or even approximately. As nodes are rebooted, new
stats_files will be created as soon as a job begins or the cron task
runs.

\warning Stats from a given job on a give host may span multiple files.

\warning Expect stats files to be missing occasionally, as nodes may
crash before they can be archived. Since we use ram backed storage
these files do not survive a reboot.

Running job_pickles.py

job_pickles.py can be run manually by:

$./job_pickles.py [-start date_start] [-end date_end] [-dir directory] [-jobids id0 id1 ... idn]

where the 4 optional arguments have the following meaning

		-dir : the directory to store pickled dictionaries

		-start : the start of the date range, e.g. "2013-09-25 00:00:00"

		-end : the end of the date range, e.g. "2013-09-26 00:00:00"

		jobids : individual jobids to pickle

		

No arguments results in all jobs from the previous day getting pickled and stored in the pickles_dir
defined in setup.cfg. On Stampede argumentless job_pickles.py is run every 24 hours as a cron job
set-up by the user

For pickling data with Intel Sandy Bridge core and uncore counters it is useful to
modify the event_map dictionaries in intel_snb.py to include whatever events you are counting.The dictionaries map a control register value to a Schema name.You can have events in the event_map dictionaries that you are not counting,
but if missing an event it will be labeled in the Schema with it’s control register
value.

Stats Data

Raw stats data: generated by tacc_stats

A raw stats file consists of a multiline header, followed my one or more
record groups. The first few lines of the header identify the version
of tacc_stats, the FQDN of the host, it’s uname, it’s uptime in seconds, and
other properties to be specified.

$tacc_stats 1.0.2
$hostname i101-101.ranger.tacc.utexas.edu
$uname Linux x86_64 2.6.18-194.32.1.el5_TACC #18 SMP Mon Mar 14 22:24:19 CDT 2011
$uptime 4753669

These are followed by schema descriptors for each of the types collected:

!amd64_pmc CTL0,C CTL1,C CTL2,C CTL3,C CTR0,E,W=48 CTR1,E,W=48 CTR2,E,W=48 CTR3,E,W=48
!cpu user,E,U=cs nice,E,U=cs system,E,U=cs idle,E,U=cs iowait,E,U=cs irq,E,U=cs softirq,E,U=cs
!lnet tx_msgs,E rx_msgs,E rx_msgs_dropped,E tx_bytes,E,U=B rx_bytes,E,U=B rx_bytes_dropped,E
!ps ctxt,E processes,E load_1 load_5 load_15 nr_running nr_threads
...

A schema descriptor consists of the character ‘!‘ followed by the
type, followed by a space separated list of elements. Each element
consists of a key name, followed by a comma-separated list of options;
the options currently used are:

		E meaning that the counter is an event counter,

		W= meaning that the counter is wide (as opposed to 64),

		C meaning that the value is a control register, not a counter,

		U= meaning that the value is in units specified by .

Note especially the event and width options. Certain counters, such
as the performance counters are subject to rollover, and as such their
widths must be known for the values to be interpreted correctly.

\warning The archived stats files do not account for rollover. This
task is left for postprocessing.

A record group consists of a blank line, a line containing the epoch
time of the record and the current jobid, zero of more lines of marks
(each starting with the % character), and several lines of statistics.

1307509201 1981063
%begin 1981063
amd64_pmc 11 4259958 4391234 4423427 4405240 235835341001110 187269740525248 62227761639015 177902917871843
amd64_pmc 10 4259958 4391234 4405239 4423427 221601328309784 187292967300939 47879507215852 174113618669738
amd64_pmc 13 4259958 4405238 4391234 4423427 211997466129346 215850892876689 2218837366391 233806061617899
amd64_pmc 12 4392928 4259958 4391234 4423427 6782043270201 102683296940807 2584394368284 174209034378272
...
cpu 11 429720418 0 1685980 43516346 447875 155 3443
cpu 10 429988676 0 1675476 43150935 559410 8 283
...
net ib0 0 0 55915434547 0 0 0 0 0 0 0 0 0 159301288 0 46963995550 0 0 97 0 0 0 31404022 0
...
ps - 4059349377 507410 1600 1600 1600 18 373
...

Each line of statistics contains the type (amd64_pmc, cpu, net,
ps,...), the device (11,10,13,12,...,ib0,-...), followed by the
counter values in the order given by the schema. Note that when we
cannot meaningfully attach statistics to a device, we use ‘-‘ as the
device name.

TYPES

The TYPES that can be collected are:

amd64_pmc AMD Opteron performance counters (per core)
intel_nhm Intel Nehalem Processor (per core)
intel_uncore Westmere Uncore (per socket)
intel_snb Intel Sandy Brige Processor (per core)
intel_snb_cbo Caching Agent (CBo) (per socket)
intel_snb_pcu Power Control Unit (per socket)
intel_snb_imc Integrated Memory Controller (per socket)
intel_snb_qpi QPI Link Layer (per socket)
intel_snb_hau Home Agent Unit (per socket)
intel_snb_r2pci Ring to PCIe Agent (per socket)
ib Infiniband usage
ib_sw InfiniBand usage
ib_ext Infiniband usage
llite Lustre filesystem usage (per mount),
lnet Lustre network usage
mdc Lustre network usage
osc Lustre filesystem usage
block block device statistics (per device),
cpu scheduler accounting (per CPU),
mem memory usage (per socket)
net network device usage (per device)
nfs NFS system usage
numa weird NUMA statistics (per socket),
ps process statistics,
sysv_shm SysV shared memory segment usage,
tmpfs ram-backed filesystem usage (per mount),
vfs dentry/file/inode cache usage,
vm virtual memory statistics.

The TYPES to include in a build of tacc_stats are specified in
the setup.cfg list TYPES. To add a new TYPE to tacc_stats,
write the appropriate TYPENAME.c file and place it in the src/monitor/ directory.
Then add the TYPENAME to the TYPES list.

For the keys associated with each TYPE, see the appropriate schema.
For the source and meanings of the counters, see the tacc_stats source
https://github.com/rtevans/tacc_stats, the CentOS 5.6 kernel source,
especially Documentation/*, and the manpages, especially proc(5).

I have not tracked down the meanings of all counters. However, if I
did (and it wasn’t obvious from the counter name) then I put that
information in the source (see for example block.c).

All intel Sandy Bridge core and uncore counters are documented in detail
in their corresponding source code and via Doxygen, e.g. intel_snb.c.
Many processor-related performance counters are configurable using their
corresponding control registers. The use of these registers is described
in the source code and Doxygen.

\note All chip architecture related types are checked for existence at
run time. Therefore, it is unnecessary for the user to filter for
these types listed above - they will be filtered at run time. This
should also work well for systems composed of multiple types of chip
architectures.

\warning Due to a bug in Lustre, llite overreports read_bytes.

\warning Some event counters (from ib_sw, numa, and possibly others)
suffer from occasional dips. This may be due to non-atomic accesses
in the (kernel) code that presents the counter, a bug in tacc_stats,
or some other condition. Spurious rollover is easy to detect,
however, because a naive adjustment produced a riduculously large
delta.

\warning We never reset counters, thus to determine the number of
events that occurred during a job, you must subtract the value at
begin from end.

\warning Due to a quirk in the Opteron performance counter
architecture, we do not assign the same set of events to each core,
see amd64_pmc.c in the tacc_stats source for details.

Pickled stats data: generated job_pickles.sh

Pickled stats data will be placed in the directory specified by
pickles_dir. The pickled data is contained in a nested python
dictionary with the following key layers:

job : 1st key Job ID
 host : 2nd key Host node used by Job ID
 type : 3rd key TYPE specified in tacc_stats
 device : 4th key device belonging to type

For example, to access Job ID 101‘s stats data on host c560-901 for
TYPE intel_snb for device cpu number 0 from within a python script:

pickle_file = open('101','r')
jobid = pickle.load(pickle_file)
pickle_file.close()
jobid['c560-901']['intel_snb']['0']

The value accessed by this key is a 2D array, with rows corresponding to record times and
columns to specific counters for the device. To view the names for each counter add

jobid.get_schema('intel_snb')

or for a short version

jobid.get_schema('intel_snb').desc

Copyright

(C) 2011 University of Texas at Austin

License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		tacc_stats latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/comment-bright.png

_static/comment-close.png

